Нейтронные звезды, которые часто называют «мертвыми», являются удивительнейшими объектами. Их
изучение в последние десятилетия превратилось в одну из самых увлекательных и богатых открытиями
областей астрофизики. Интерес к нейтронным звездам обусловлен не только загадочностью их строения, но
и колоссальной плотностью, и сильнейшими магнитными и гравитационными полями. Материя
там находится в особом состоянии, напоминающем огромное атомное ядро, и эти условия невозможно
воспроизвести в земных лабораториях.
|
Пульсар - это просто огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью
магнита. Если бы на него ничего не падало и он ничего не испускал, то его радиоизлучение имело бы частоту вращения и мы
никогда бы его не услышали на Земле. Но дело в том, что данный волчок имеет колоссальную массу и высокую температуру
поверхности, да и вращающееся магнитное поле создает огромное по напряженности электрическое поле, способное разгонять
протоны и электроны почти до световых скоростей. Причем все эти заряженные частицы, носящиеся вокруг пульсара, зажаты в
ловушке из его колоссального магнитного поля. И только в пределах небольшого телесного угла около магнитной оси они могут
вырваться на волю (нейтронные звезды обладают самыми сильными магнитными полями во Вселенной, достигающими
10
10-10
14 гаусс, для сравнения: земное поле составляет 1 гаусс, солнечное - 10-50 гаусс).
Именно эти потоки заряженных частиц и являются источником того радиоизлучения, по которому и были открыты пульсары,
оказавшиеся в дальнейшем нейтронными звездами. Поскольку магнитная ось нейтронной звезды необязательно совпадает с осью
ее вращения, то при вращении звезды поток радиоволн распространяется в космосе подобно лучу проблескового маяка - лишь на
миг прорезая окружающую мглу.
|
Нейтронные звезды были идентифицированы как источники мощных гамма-всплесков после огромной гамма-вспышки 5 марта 1979 года,
когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает за 1000 лет.
|
НЕЙТРОННЫЕ ЗВЕЗДЫ
|
Открытие в 1932 году новой элементарной частицы - нейтрона заставило астрофизиков задуматься над
тем, какую роль он может играть в эволюции звезд. Два года спустя было высказано предположение о том, что взрывы сверхновых
звезд связаны с превращением обычных звезд в нейтронные. Затем Были выполнены расчеты структуры и параметров последних, и
стало ясно, что если небольшие звезды (типа нашего Солнца) в конце своей эволюции превращаются в белых карликов, то
более тяжелые становятся нейтронными. В августе 1967 года радиоастрономы при изучении мерцаний космических радиоисточников
обнаружили странные сигналы - фиксировались очень короткие, длительностью около 50 миллисекунд, импульсы радиоизлучения,
повторявшиеся через строго определенный интервал времени (порядка одной секунды). Это было совершенно не похоже на обычную
хаотическую картину случайных нерегулярных колебаний радиоизлучения. После тщательной проверки всей аппаратуры пришла
уверенность, что импульсы имеют внеземное происхождение. Астрономов трудно удивить объектами, излучающими с переменной
интенсивностью, но в данном случае период был столь мал, а сигналы - столь регулярны, что ученые всерьез предположили, что
они могут быть весточками от внеземных цивилизаций. А потому первый пульсар получил название LGM-1 (от английского Little
Green Men - «Маленькие Зеленые Человечки»), хотя попытки найти какой-либо смысл в принимаемых импульсах окончились
безрезультатно. Вскоре были обнаружены еще 3 пульсирующих радиоисточника. Их период опять оказался много меньше характерных
времен колебания и вращения всех известных астрономических объектов. Из-за импульсного характера излучения новые объекты
стали называть пульсарами. Это открытие буквально всколыхнуло астрономию, и из многих радиообсерваторий начали поступать
сообщения об обнаружении пульсаров. После открытия пульсара в Крабовидной Туманности, возникшей из-за взрыва сверхновой в
1054 году, стало ясно, что пульсары каким-то образом связаны с вспышками сверхновых звезд. Скорее всего, сигналы шли от
объекта, оставшегося после взрыва. Прошло немало времени, прежде чем астрофизики поняли, что пульсары - это и есть быстро
вращающиеся нейтронные звезды, которые они так долго искали.
|
Взрыв сверхновой звезды достаточно часто сообщает новорожденному пульсару немалую скорость. Результат компьютерного
моделирования позволяет очень наглядно, в разрезе, представить процессы, происходящие вблизи быстро летящего пульсара.
|
НЕЙТРОННЫЕ ЗВЕЗДЫ
|
Согласно современной теории эволюции массивные звезды заканчивают свою жизнь колоссальным
взрывом, превращающим большую их часть в расширяющуюся газовую тyманность. В итоге от гиганта, во много раз превышавшего
размерами и массой наше Солнце, остается плотный горячий объект размером около 20 км, с тонкой атмосферой (из водорода и
более тяжелых ионов) и гравитационным полем, в 100 млрд. раз превышающим земное. Его и назвали нейтронной звездой, полагая,
что он состоит главным образом из нейтронов. Вещество нейтронной звезды - самая плотная форма материи (чайная ложка такого
суперядра весит около миллиарда тонн).
Очень короткий период излучаемых пульсарами сигналов был первым и самым главным аргументом в
пользу того, что это и есть нейтронные звезды, обладающие огромным магнитным полем и вращающиеся с бешеной скоростью. Только
плотные и компактные объекты (размером всего в несколько десятков километров) с мощным гравитационным полем могут
выдерживать такую скорость вращения, не разлетаясь на куски из-за центробежных сил инерции. Нейтронная звезда состоит из
нейтронной жидкости с примесью протонов и электронов. «Ядерная жидкость», очень напоминающая вещество из атомных ядер, в
10
14 раз плотнее обычной воды. Это огромное различие вполне объяснимо - ведь атомы состоят в основном из пустого
пространства, в котором вокруг крошечного тяжелого ядра порхают легкие электроны. Ядро содержит почти всю массу, так как
протоны и нейтроны в 2 000 раз тяжелее электронов. Экстремальные силы, возникающие при формировании нейтронной звезды, так
сжимают атомы, что электроны, вдавленные в ядра, объединяются с протонами, образуя нейтроны. Таким образом рождается звезда,
почти полностью состоящая из нейтронов. Сверхплотная ядерная жидкость, если ее принести на Землю, взорвалась бы, подобно
ядерной бомбе, но в нейтронной звезде она устойчива благодаря огромному гравитационному давлению. Однако во внешних слоях
нейтронной звезды (как, впрочем, и всех звезд) давление и темпepaтypa падают, образуя твердую корку толщиной около
километра. Как полагают, состоит она в основном из ядер железа.
|
ВНУТРЕННЯЯ СТРУКТУРА
|
Внутренняя структура нейтронной звезды: (на верхнем среднем изображении)
[1] - Сердцевина пульсара скорее всего твердая и состоит уже не из протонов и нейтронов, а из
кварков и глюонов, образующих особый сверхплотный конгломерат.
[2] - Внешняя часть ядра нейтронной звезды - коктейль из сверхтекучей нейтронной жидкости,
сверхпроводящей протонной и плотного электронного газа, растворенного в ядерном веществе.
[3] - Внутренняя кора толщиной до 1 км, здесь давление столь велико, что часть электронов соединяется
с протонами, образуя нейтроны, которые так же, как электроны, спокойно дефилируют между ядрами, стоящими в узлах решетки.
[4] - Внешняя кора толщиной 200-300 метров очень напоминает сильно сжатую кристаллическую
решетку металлов, почти все электроны могут свободно перемещаться от атома к атому. Твердая корка внешних слоев нейтронной
звезды состоит из тяжёлых атомных ядер, упорядоченных в кубическую решетку, с электронами, свободно летающими между ними, чем напоминает земные металлы, но только намного более платные.
[5] - Атмосфера звезды состоит из сильно ионизированной высокотемпературной плазмы,
простирающейся на сотни километров, диаметр твердой части звезды обычно не превышает 20 км.
[6] - Магнитный полюс пульсара, совсем не обязательно совпадающий с "северным", вокруг которого
крутится этот маленький, но очень тяжелый шарик. Заряженные частицы могут двигаться только вдоль магнитных силовых линий,
поэтому потоки падающих на нейтронную звезду и вылетающих из нее частиц концентрируются вблизи ее полюсов.
[7] - Ядро однородный конгломерат нейтронов.
[8] - Внутренняя кора некая упорядоченная
кристаллическая структура ядер, между которыми летают нейтроны и электроны.
Активное динамо - получение энергии для поля. Все мы знаем, что энергия любит переходить из одной формы в другую. Электричество легко превращается
в тепло, а кинетическая энергия - в потенциальную. Огромные конвективные потоки электропроводящей магмы плазмы или ядерного
вещества, оказывается, тоже могут свою кинетическую энергию преобразовать во что-нибудь необычное, например в магнитное
поле. Перемещение больших масс на вращающейся звезде в присутствии небольшого исходного магнитного поля могут приводить
к электрическим токам, создающим поле того же направления, что и исходное. В результате начинается лавинообразное нарастание
собственного магнитного поля вpaщающегося токопроводящего объекта. Чем больше поле, тем больше токи, чем больше токи, тем
больше поле и все это из-за банальных конвективных потоков, обусловленных тем, что горячее вещество легче холодного, и
потому всплывает...
Хотя нейтронные звезды интенсивно изучаются уже около трех десятилетий, их внутренняя структура
доподлинно неизвестна. Более того, нет твердой уверенности и в том, что они действительно состоят в основном из нейтронов.
С продвижением вглубь звезды давление и плотность увеличиваются и материя может быть настолько сжата, что она распадется
на кварки - строительные блоки протонов и нейтронов. Согласно современной квантовой хромодинамике кварки не могут
существовать в свободном состоянии, а объединяются в неразлучные «тройки» и «двойки». Но, возможно, у границы внутреннего
ядра нейтронной звезды ситуация меняется и кварки вырываются из своего заточения.
Чтобы глубже понять природу нейтронной звезды и экзотической кварковой материи, астрономам
необходимо определить соотношение между массой звезды и ее радиусом (средняя плотность). Исследуя нейтронные звезды со
спутниками, можно достаточно точно измерить их массу, но определить диаметр-намного труднее. Совсем недавно ученые,
используя возможности рентгеновского спутника «ХММ-Ньютон», нашли способ оценки плотности нейтронных звезд, основанный на
гравитационном красном смещении.
|
Данный пульсар находится на расстоянии всего 450 световых лет от Земли и является двойной системой из нейтронной звезды и
белого карлика с периодом обращения 5,5 дня. Мягкое рентгеновское излучение, принимаемое спутником ROSAT, испускают
раскаленные до двух миллионов градусов полярные шапки PSR J0437-4715. В процессе своего быстрого вращения (период этого
пульсара равен 5,75 миллисекунды) он поворачивается к Земле то одним, то другим магнитным полюсом, в результате
интенсивность потока гамма-квантов меняется на 33%. Яркий объект рядом с маленьким пульсаром - это далекая галактика,
которая по каким-то причинам активно светится в рентгеновском участке спектра.
|
ПУЛЬСАР PSR J0437-4715
|
Необычность нейтронных звезд состоит еще и в том, что при уменьшении массы звезды ее радиус
возрастает - в результате наименьший размер имеют наиболее массивные нейтронные звезды. Пульсары считаются одной из ранних
стадий жизни нейтронной звезды. благодаря их изучению ученые узнали и о магнитных полях, и о скорости вращения, и о
дальнейшей судьбе нейтронных звезд. Постоянно наблюдая за поведением пульсара, можно точно установить: сколько энергии
он теряет, насколько замедляется, и даже то, когда он прекратит свое существование, замедлившись настолько, что не сможет
излучать мощные радиоволны. Эти исследования подтвердили многие теоретические предсказания относительно нейтронных звезд.
Уже к 1968 году были обнаружены пульсары с периодом вращения от 0,033 секунды до 2 секунд.
Периодичность импульсов радиопульсара выдерживается с удивительной точностью, и поначалу стабильность этих сигналов была
выше земных атомных часов. И все же по мере прогресса в области измерения времени для многих пульсаров удалось
зарегистрировать регулярные изменения их периодов. Конечно, это исключительно малые изменения, и только за миллионы лет
можно ожидать увеличения периода вдвое. Отношение текущей скорости вращения к замедлению вращения - один из способов оценки
возраста пульсара.
Несмотря на поразительную стабильность радиосигнала, некоторые пульсары иногда испытывают так
называемые «нарушения». За очень короткий интервал времени (менее 2 минут) скорость вращения пульсара увеличивается на
существенную величину, а затем через некоторое время возвращается к той величине, которая была до «нарушения». Полагают,
что «нарушения» могут быть вызваны перегруппировкой массы в пределах нейтронной звезды. Но в любом случае точный механизм
пока неизвестен. Так, пульсар Вела примерно раз в 3 года подвергается большим «нарушениям», и это делает его очень
интересным объектом для изучения подобных явлений.
Взрыв сверхновой звезды достаточно часто сообщает новорожденному пульсару немалую скорость. Такая летящая звезда с
приличным собственным магнитным полем сильно возмущает ионизированный газ, заполняющий межзвездное пространство. Образуется
своеобразная ударная волна, бегущая впереди звезды и расходящаяся широким конусом после нее. Совмещенное оптическое
(сине-зеленая часть) и рентгеновское (оттенки красного) изображение пульсара "Черная Вдова" показывает, что здесь мы имеем
дело не просто со светящимся газовым облаком, а с огромным потоком элементарных частиц, испускаемых данным миллисекундным
пульсаром. Линейная скорость Черной Вдовы равна 1 млн. км/ч, оборот вокруг оси она делает за 1,6 мс, лет ей уже около
миллиарда, и у нее есть звезда-компаньон, кружащаяся около Вдовы с периодом 9,2 часа. Свое название пульсар В1957+20 получил
по той простой причине, что его мощнейшее излучение просто сжигает соседа, заставляя «кипеть» и испаряться образующий его
газ. Красный сигарообразный кокон позади пульсара - это та часть пространства, где испускаемые нейтронной звездой
электроны и протоны излучают мягкие гамма-кванты.
Результат компьютерного моделирования позволяет очень наглядно, в разрезе, представить процессы,
происходящие вблизи быстро летящего пульсара. Расходящиеся от яркой точки лучи - это условное изображение того потока
лучистой энергии, а также потока частиц и античапиц, который исходит от нейтронной звезды. Красная обводка на границе
черного пространства вокруг нейтронной звезды и рыжих светящихся клубов плазмы - это то место, где поток релятивистских,
летящих почти со скоростью света, частиц встречается с уплотненным ударной волной межзвездным газом. Резко тормозя, частицы
испускают рентгеновское излучение и, потеряв основную энергию, уже не так сильно разогревают налетающий газ.
Магнетары - нейтронные оригиналы
Некоторые нейтронные звезды, названные источниками повторяющихся всплесков мягкого
гамма-излучения - SGR, испускают мощные всплески «мягких» гамма-лучей через нерегулярные интервалы. Количество энергии,
выбрасываемое SGR при обычной вспышке, длящейся несколько десятых секунды, Солнце может излучить только за целый год.
Четыре известные SGR находятся в пределах нашей Галактики и только один - вне ее. Эти невероятные взрывы энергии могут быть
вызваны звездотрясениями - мощными версиями землетрясений, когда разрывается твердая поверхность нейтронных звезд и из
их недр вырываются мощные потоки протонов, которые, увязая в магнитном поле, испускают гамма- и рентгеновское излучение.
Нейтронные звезды были идентифицированы как источники мощных гамма-всплесков после огромной
гамма-вспышки 5 марта 1979 года, когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает
за 1 000 лет. Недавние наблюдения за одной из наиболее «активных» в настоящее время нейтронных звезд, похоже, подтверждают
теорию о том, что нерегулярные мощные всплески гамма- и рентгеновского излучений вызваны звездотрясениями. В 1998 году
внезапно очнулся от «дремоты» известный SGR, который 20 лет не подавал признаков активности и выплеснул почти столько же
энергии, как и гамма-вспышка 5 марта 1979 года. Больше всего поразило исследователей при наблюдении за этим событием резкое
замедление скорости вращения звезды, говорящее о ее разрушении. Для объяснения мощных гамма и рентгеновских вспышек была
предложена модель магнетара-нейтронной звезды со сверхсильным магнитным полем. Если нейтронная звезда рождается, вращаясь
очень быстро, то совместное влияние вращения и конвекции, которая играет важную роль в первые несколько секунд существования
нейтронной звезды, может создать огромное магнитное поле в результате сложного процесса, известного как «активное динамо»
(таким же способом создается поле внутри Земли и Солнца). Теоретики были поражены, обнаружив, что такое динамо, работая в
горячей, новорожденной нейтронной звезде, может создать магнитное поле, в 10 000 раз более сильное, чем обычное поле
пульсаров. Когда звезда охлаждается (секунд через 10 или 20), конвекция и действие динамо прекращаются, но этого времени
вполне достаточно, чтобы успело возникнуть нужное поле.
|
Анализ данных (от RXTE) при наблюдениях пульсара SGR 1806-20, показал, что этот источник является самым мощным из известных
на сегодняшний день магнитов во Вселенной. Величина его поля была определена по измерению частоты вращения протонов в
магнитном поле нейтронной звезды. Магнитное поле вблизи поверхности этого магнитара достигает 10 15 гаусс.
|
ПУЛЬСАР SGR 1806-20
|
Магнитное поле вращающегося электропроводящего шара бывает неустойчивым, и резкая перестройка
его структуры может со провождаться выбросом колоссальных количеств энергии (наглядный пример такой неустойчивости -
периодическая переброска магнитных полюсов Земли). Аналогичные вещи случаются и на Солнце, во взрывных событиях, названных
«солнечными вспышками». В магнетаре доступная магнитная энергия огромна, и этой энергии вполне достаточно для мощи таких
гигантских вспышек, как 5 марта 1979 и 27 августа 1998 годов. Подобные события неизбежно вызывают глубокую ломку и изменения
в структуре не только электрических токов в объеме нейтронной звезды, но и ее твердой коры. Другим загадочным типом
объектов, которые испускают мощное рентгеновское излучение во время периодических взрывов, являются так называемые
аномальные рентгеновские пульсары - АХР. Они отличаются от обычных рентгеновских пульсаров тем, что излучают только в
рентгеновском диапазоне. Ученые полагают, что SGR и АХР являются фазами жизни одного и того же класса объектов, а именно
магнетаров, или нейтронных звезд, которые излучают мягкие гамма-кванты, черпая энергию из магнитного поля. И хотя магнетары
на сегодня остаются детищами теоретиков и нет достаточных данных, подтверждающих их существование, астрономы упорно ищут
нужные доказательства.
Знаменитая космическая обсерватория «Чандра» обнаружила сотни объектов (в том числе и в других
галактиках), свидетельствующих о том, что не всем нейтронным звездам предназначено вести жизнь в одиночестве. Такие объекты
рождаются в двойных системах, которые пережили взрыв сверхновой, создавший нейтронную звезду. А иногда случается, что
одиночные нейтронные звезды в плотных звездных областях типа шаровых скоплений захватывают себе компаньона. В таком случае
нейтронная звезда будет «красть» вещество у своей соседки. И в зависимости оттого, насколько массивная звезда составит ей
компанию, эта «кража» будет вызывать разные последствия. Газ, текущий с компаньона, массой, меньшей, чем у нашего Солнца,
на такую «крошку», как нейтронная звезда, не сможет сразу упасть из-за слишком большого собственного углового момента,
поэтому он создает вокруг нее так называемый аккреционный диск из «украденной» материи. Трение при накручивании на
нейтронную звезду и сжатие в гравитационном поле разогревает газ до миллионов градусов, и он начинает испускать
рентгеновское излучение.
Другое интересное явление, связанное с нейтронными звездами, имеющими маломассивного компаньона,
- рентгеновские вспышки (барстеры). Они обычно длятся от нескольких секунд до нескольких минут и в максимуме дают звезде
светимость, почти в 100 тысяч раз превышающую светимость Солнца. Эти вспышки объясняют тем, что, когда водород и гелий
переносятся на нейтронную звезду с компаньона, они образуют плотный слой. Постепенно этот слой становится настолько плотным
и горячим, что начинается реакция термоядерного синтеза и выделяется огромное количество энергии. По мощности это
эквивалентно взрыву всего ядерного арсенала землян на каждом квадратном сантиметре поверхности нейтронной звезды в течение
минуты. Совсем другая картина наблюдается, если нейтронная звезда имеет массивного компаньона. 3везда-гигант теряет вещество
в виде звездного ветра (исходящего от ее поверхности потока ионизированного газа), и огромная гравитация нейтронной звезды
захватывает часть этого вещества себе. Но здесь вступает в свои права магнитное поле, которое заставляет падающее вещество
течь по силовым линиям к магнитным полюсам. Это означает, что рентгеновское излучение прежде всего генерируется в горячих
точках на полюсах, и если магнитная ось и ось вращения звезды не совпадают, то яркость звезды оказывается переменной - это
тоже пульсар, но только рентгеновский.
Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты. В барстерах
же компаньонами нейтронных звезд являются слабые по блеску звезды малых масс. Возраст ярких гигантов не превышает нескольких
десятков миллионов лет, тогда как возраст слабых звезд - карликов может насчитывать миллиарды лет, поскольку первые гораздо
быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры - это старые системы, в которых магнитное
поле успело со временем ослабеть, а пульсары - относительно молодые, и потому магнитные поля в них сильнее. Может быть,
барстеры когда-то в прошлом пульсировали, а пульсарам еще предстоит вспыхивать в будущем.
|
Звезда, отпуская по кусочку свою массу, постепенно перемещается на соседа, имеющего огромное
гравитационное поле вблизи своей поверхности. Поскольку эвезды кружатся в хороводе, то падающая материя, прежде чем она
окажется на поверхности, должна потерять большую часть своего момента импульса. И здесь взаимное трение частиц, двигающихся
по различным траекториям, и взаимодействие ионизированной плазмы, образующей аккреционный диск, с магнитным полем пульсара
по процессу падения материи успешно закончиться ударом о поверхность нейтронной звезды в области ее магнитных полюсов.
|
ПЕРЕТЕКАНИЕ ВЕЩЕСТВА
|
С двойными системами связывают и пульсары с самыми короткими периодами (менее 30 миллисекунд) -
так называемые миллисекундные пульсары. Несмотря на их быстрое вращение, они оказываются не молодыми, как следовало бы
ожидать, а самыми старыми. Возникают они из двойных систем, где старая, медленно вращающаяся нейтронная звезда начинает
поглощать материю со своего, тоже уже состарившегося компаньона (обычно красного гиганта). Падая на поверхность нейтронной
звезды, материя передает ей вращательную энергию, заставляя крутиться все быстрее. Происходит это до тех пор, пока компаньон
нейтронной звезды, почти освобожденный от лишней массы, не станет белым карликом, а пульсар не оживет и не начнет вращаться
со скоростью сотни оборотов в секунду.
Впрочем, недавно астрономы обнаружили весьма необычную систему, где компаньоном миллисекундного
пульсара является не белый карлик, а гигантская раздутая красная звезда. Ученые полагают, что они наблюдают эту двойную
систему как раз в стадии «освобождения» красной звезды от лишнего веса и превращения в белого карлика. Если эта гипотеза
неверна, тогда звезда-компаньон может быть обычной звездой из шарового скопления, случайно захваченной пульсаром.
Почти все нейтронные звезды, которые известны в настоящее время, найдены или в рентгеновских
двойных системах, или как одиночные пульсары. И вот недавно «Хаббл» заметил в видимом свете нейтронную звезду, которая не
является компонентом двойной системы и не пульсирует в рентгеновском и радиодиапазоне. Это дает уникальную возможность
точно определить ее размер и внести коррективы в представления о составе и структуре этого причудливого класса выгоревших,
сжатых гравитацией звезд. Эта звезда была обнаружена впервые как рентгеновский источник и излучает в этом диапазоне не
потому, что собирает водородный газ, когда движется в пространстве, а потому, что она все еще молода. Возможно, она
является остатком одной из звезд двойной системы. В результате взрыва сверхновой эта двойная система разрушилась и бывшие
соседи начали независимое путешествие по Вселенной.
Всего на сегодняшний день астрономы обнаружили около 1 200 нейтронных звезд. Из них более 1 000
являются радиопульсарами, а остальные - просто рентгеновскими источниками. 3а годы исследований ученые пришли к выводу, что
нейтронные звезды - настоящие оригиналы. Одни - очень яркие и спокойные, другие - периодически вспыхивающие и
видоизменяющиеся звездотрясениями, третьи - существующие в двойных системах. Эти звезды относятся к самым загадочным и
неуловимым астрономическим объектам, соединяющим в себе сильнейшие гравитационные и магнитные поля и экстремальные плотности
и энергии. И каждое новое открытие из их бурной жизни дает ученым уникальные сведения, необходимые для понимания природы
Материи и эволюции Вселенной.